Gravic Light Bucket Astronomy Projects 2010

Bruce D. Holenstein, Robert H. Koch, Richard J. Mitchell, Dylan R. Holenstein, Alexander D. Thompson, Alexander J. Demirjian, Michael D. Holenstein, Garth R. Boyer **Gravic, Inc.**

Alt-Az Initiative Portland IV Workshop, 7/31-8/1, 2010

Topics

- Research Opportunities
 - Occultations & other topics
- Light Bucket Astronomy
 - Light bucket theory
 - Relative SNRs
- Optical Technologies
 - Light bucket mirrors
 - Correctors
 - Evaluations of other new technologies
- Instrumentation
 - Area and diaphragm detectors

Research Opportunities

Occultations & other topics

- Light Bucket Astronomy
 - Light bucket theory
 - Relative SNRs
- Optical Technologies
 - Light bucket mirrors
 - Correctors
 - Evaluations of other new technologies
- Instrumentation
 - Area and diaphragm detectors

Research Opportunities

- Occultations
- Intensity Interferometry
- High-precision photometry
- Spectroscopy
- Polarimetry
- And many other astronomical areas...

Occultations

 IOTA – focuses on timing events
 Occultation

sources

- Lunar
- Asteroids
- Other solar system
- KBO opportunity

Lunar Occultations

Distance on ground (meters)

Lunar Occultations II

Lunar Occultations III

- IOTA Software Tools
 - Occult4, Occult Watcher, LiMovie, Tangra
 - Demo (time permitting)
- Detectors needed:
 - Fast area or diaphragm-limiting
 - Longer wavelengths (NIR) advantages

Sample Event

🖳 Lunar occultation predictions			- 0			
with Prediction Mag limit adjustment 🆓 3-day weather forecast 🕜 Help 🗙 Exit						
1. Select site for predictions Use home BDH sites.site Set home -122.5 to -72.9, 33.3 to 45.2 Malvern-Gravic Use single	2. Star catalogue 3. Objects ✓	4. Set UT dates s Year Month Day Start 2010 Jun 18 Find 2010 Jun 18 Year Month Day Starting at Could at the start 0 hrs 0 Year Month Day Starting at Year Multi-site Image: Starting at Year Year 18 + 6 hrs Year Month Day Today Year Month Jay Today Year Month Jay <	World map			
Right-click on prediction for further	options	Doubles only [201	10 Jun 18]			
10 Jun 18 1 25 15 r X119144 10 Jun 18 1 31 43 r 118445 10 Jun 18 1 34 13 4 3 r 118445 10 Jun 18 1 34 13 d 34285 10 Jun 18 1 41 47 r X119272 10 Jun 18 1 49 42 4X119272 10 Jun 18 2 9 48 4X19270 10 Jun 18 2 11 22 r X119200 10 Jun 18 2 12 12 r X119200 10 Jun 18 2 12 10 118452 118452 118452 118452 is double: ** 8.5 118452 118452 118452	11.1 10.8 37+ 75 -9 G0 9.3 9.0 37+ 75 -10 K2 10.6 10.0 37+ 75 -10 11.3 11.0 37+ 75 -11 11.5 11.0 37+ 75 11.1 10.7 37+ 75 10.2 10.0 37+ 75 11.4 11.0 37+ 75 K0 9.3 8.8 37+ 75 SFZ 8.3 8.1 37+ 75 9.1 0.10" 190.0** as non-instantaneous (0Cc 4 C5 8 5 8 2 3 27+ 75	9 30 245 -218 225 181 203 +1.9 +6.7 +3.4+2.0 .109 -103 10 42 13.9 2 0 29 246 -37N 347 302 325 +1.9 +6.7 +0.2-2.6 .346 135 10 42 55.5 2 0 29 246 79N 103 59 82 +1.9 +6.7 +1.0-1.5 .466 18 10 44 18.6 2 1 27 248 -818 285 240 264 +1.9 +6.7 +0.9-1.5 .478 -164 10 42 24.6 2 26 249 79N 103 57 81 +1.9 +6.7 +0.9-1.5 .475 18 10 44 45.3 2 26 249 79N 103 57 81 +1.9 +6.7 +1.0-1.3 .432 30 10 44 49.2 2 23 253 76N 100 53 79 +1.8 +6.7 +0.8-1.5 .482 20 10 45 21.2 2 22 253 -718 275 227 253 +1.8 +6.7 +0.8-1.4 .466 -155 10 43 14.6 2 21 255 -738 277 229 255 +1.8 +6.7 +0.7-1.4 .478 -158 10 43 16.5 2 21 255 -738 277 229 255 +1.8 +6.7 +0.7-1.4 .479 -157 10 43 27.4 2 412). Observations are highly desired 20 255 293 175 127 154 +1 8 45 7 40 0-2 9 293 -56 10 44 47 3 1	10 (35 5°; 15 43 21 40 11 52 14 55 7 23 11 5 11 46 9 53 50 25			
10 Jun 18 2 24 41 d X119309	11.5 11.2 37+ 75	20 255 615 143 95 122 +1.8 +6.7 +0.4-2.1 .478 -24 10 45 23.1 1	53 23			
10 Jun 18 2 31 47 d X 16131 10 Jun 18 2 34 54 r X 34285 10 Jun 18 2 34 54 r X 34285 10 Jun 18 2 41 49 d X119346 10 Jun 18 2 43 25 d 118486 10 Jun 18 2 45 30 r X119236 10 Jun 18 2 49 17 r X119272 10 Jun 18 2 55 57 r 118466	F2 10.1 9.9 37+ 75 K2 10.6 10.0 37+ 75 11.2 10.9 37+ 75 G5 9.2 8.7 37+ 75 11.1 10.7 37+ 75 11.5 11.0 37+ 75 G5 8.5 8.3 38+ 76	19 256 64N 88 39 66 +1.8 +6.7 +0.7-1.3 .450 32 10 46 2.1 18 257 -66N 317 269 296 +1.8 +6.8 +0.4-2.0 .504 162 10 44 18.6 17 258 52N 76 27 54 +1.8 +6.8 +0.7-1.0 .392 43 10 46 19.0 17 258 52N 76 27 54 +1.8 +6.8 +0.7-1.0 .392 43 10 46 19.0 17 258 42N 66 17 44 +1.8 +6.8 +0.7-0.7 .325 53 10 46 18.3 16 259 -55N 329 280 307 +1.8 +6.8 +0.2-2.2 .464 150 10 44 49.2 15 260 -67N 317 267 295 +1.8 +6.8 +0.3-2.0 .514 162 10 44 45.3 46	о п тар Мар <u>–</u>			
10 Jun 18 3 2 49 d X119376 10 Jun 18 3 7 23 r X119307 10 Jun 18 3 7 23 r X119307 10 Jun 18 3 18 56 r X119305 10 Jun 18 3 19 43 r 118486 10 Jun 18 3 22 55 r X 16131 10 Jun 18 3 25 38 r X119346	11.0 10.6 38+ 76 10.2 10.0 38+ 76 11.5 11.2 38+ 76 G5 9.2 8.7 38+ 76 F2 10.1 9.9 38+ 76 11.2 10.9 38+ 76	13 261 51N 75 25 53 +1.8 +6.8 +0.5-1.0 .402 43 10 46 59.0 12 263 -66N 317 268 296 +1.8 +6.8 +0.2-2.0 .521 160 10 45 21.2 10 264 -70S 273 223 252 +1.8 +6.8 +0.3-1.4 .515 -156 10 45 23.1 10 264 -34N 350 300 328 +1.8 +6.8 +0.0-2.6 .341 127 10 46 18.3 9 265 -55N 328 279 307 +1.8 +6.8 +0.1-2.1 .482 149 10 46 2.1 9 265 -44N 340 290 318 +1.8 +6.8 +0.0-2.3 .416 137 10 46 19.0				

Predictions based on location and elevation

Video Equipment

N18 on IPI 393 GEM

Occultation Video

Light Curve

Reproduce Aperture Positio

🔚 Graph _ 🗆 🗙 Analyzed file name [zc 118468 8.5magd.avi] Photometry in each Frame 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 n 270 390 300 330 360 450 510 540 570 480 420 Current- Measurement- < Width Line 🔽 Axis Þ 'Y Axis Object Scale 1 information Min Max Frame Value 🙆 Part ÷ ۰ 🔽 Data -10Sec -1Sec +1Sec +10Sec Radius3 Noise Reduction Edit4 Edit6 🔿 Entire Hilight Marked Dot Show Image of Clicked poir Narrow Star Image [3D] Reset Diffraction Ŧ Ŧ close Copy to ClipBoard

Lucky imaging with Light Bucket

- Keep just 2%, but which?
 - Use atmosphere to conjugate the mirror aberrations
- Defocused moon video from C8
 SCT processed with Registak5 seems to work

Topics

- Research Opportunities
 - Occultations & other topics
- Light Bucket Astronomy
 - Light bucket theory
 - Relative SNRs
- Optical Technologies
 - Light bucket mirrors
 - Correctors
 - Evaluations of other new technologies
- Instrumentation
 - Area and diaphragm detectors

Circle of Confusion

- Circle of Confusion = blur spot at focal plane
- Diaphragm = circular isolator before the detector

Aberration Characterization I

- Tools were needed to characterize progress and failure in our work
 - Traditional quantification such as P-V and Strehl Ratio were not helpful

Mirror 2 P-V and RMS measures are the same for both mirrors! But, not $|\Delta \phi|_{rms}$ (rms slope)

Aberration Characterization II

Aberration Characterization III

Diameter of CoC from surface height flaws:

$$d_{CoC,surface\ height}(n) \approx 0.5 n\sigma/f$$

Diameter of CoC from local slope flaws:

$$d_{CoC,local\,slope}(n') \approx 4n'F \,|\Delta\phi|_{rms}$$

where *f* is the focal ratio, *F* is the focal length, and the *n* and *n'* multipliers determine the encircled flux fraction

Aberration Characterization IV

Zernike wavefront representation, W(\(\rho,\theta\)), is used for the estimation of \(\sigma\) and \(|\Lefta\varphi|_{\mathbf{rms}}\)
1 W(\(\rho,\theta\)) = \(\sigma_j a_j Z_j(\rho,\theta))\)

• 2
$$\sigma_W^2 = \langle W^2(\rho,\theta) \rangle - \langle W(\rho,\theta) \rangle^2 = \sum_{i=2}^{n} a_i^2$$

3
$$\nabla W(\rho, \theta) = \frac{\delta W}{\delta \rho} e_{\rho} + \frac{1}{\rho} \frac{\delta W}{\delta \theta} e_{\theta}$$

4 $|\Delta \phi|_{rms} = \frac{\|\nabla W\|_{rms}}{D/2}$

Aberration Characterization V

Solving for the spot size gives a useful rule of thumb:

FWHM spot size (arc sec) = 2.35 $x 2 |\Delta \varphi|_{rms}$

= 2.35 x 4 $\|\nabla W\|_{rms}/D \approx 10^6 E/D$, where *E* is the "wavefront error," *D* is the mirror diameter in the same units.

e.g., 2 waves= 10^{-6} -m on 1-m mirror ~ 2" FWHM Note: *E* depends on the type of aberration (above holds for when rms grad norm = 0.5 (P-V), e.g., for tilt).

Common Aberration Gradients

Zernike Gradients							
			"E"	RMS Wavefront Gradient	Ratio		
j	Туре	Polynomial	P-V	$\ \nabla W_j\ _{rms}$	RMS Grad/E		
1	Piston	1	a1	0	0		
2	X Axis Tilt	2ρ cosθ	$4a_2$	2 a ₂	0.5		
3	Y Axis Tilt	2ρ sinθ	$4a_3$	2 a3	0.5		
4	Defocus (power)	$\sqrt{3}(2\rho^2-1)$	$2\sqrt{3} a_4$	$2\sqrt{6} a_4$	1.4		
5	45° Astigmatism	$\sqrt{6} ho^2 \sin 2 heta$	$2\sqrt{6} a_5$	$2\sqrt{3} a_5$	0.7		
6	0° Astigmatism	$\sqrt{6} ho^2\cos 2 heta$	$2\sqrt{6} a_6$	$2\sqrt{3} a_6$	0.7		
7	Y Coma	$2\sqrt{2}(3\rho^2-2\rho)sin\theta$	$\frac{16\sqrt{2}}{3}a_7$	$2\sqrt{14} a_7$	1.0		
8	X Coma	$2\sqrt{2}(3\rho^2-2\rho)cos\theta$	$\frac{16\sqrt{2}}{3}a_8$	$2\sqrt{14} a_8$	1.0		
9	<u>30°</u> Trefoil	$2\sqrt{2}\rho^3 \sin 3\theta$	$4\sqrt{2} a_9$	$4\sqrt{6} a_9$	1.7		
10	0° Trefoil	$2\sqrt{2}\rho^3 \cos 3\theta$	$4\sqrt{2} a_{10}$	$4\sqrt{6} a_{10}$	1.7		
11	Principal Spherical	$\sqrt{5}(6\rho^4 - 6\rho^2 + 1)$	$\frac{3\sqrt{5}}{2}a_{11}$	$2\sqrt{30} a_{11}$	3.2		

Note: Malacara (2007) normalization

Figures of Merit I

How do aberrations affect the Signal-to-Noise-Ratio (SNR)?

$$SNR = \frac{N_{Star+Sky} - N_{Sky}}{\sqrt{N_{Star+Sky} + N_{Sky} + N_{Detector} + S^2}} ,$$

where *Ns* are counts and *S* models atmospheric scintillation

Focal plane diaphragm size

Light Bucket vs. SCT

SAS 2010 LBA paper

Light Bucket vs. Newtonian

- Traditional f/3 Newt., 0.50-m mirror
- Light bucket f/2, 1.5-m & f/3, 1.0-m

Relative SNR (Light Bucket/50-cm Newtonian)

- Diaphragms -28"&7" vs. 7" on Newtonian
- Scintillation at 1000-m, air-mass 1.5

Program Object (mag) for 50-cm f/3 Newtonian, 21 mag/sqas Sky, 25-um Diaphragm

Light Bucket Arrays

- 7 LBT arrays vs
 8-m f/1 scope
- 2 relative diaphragm diameters (400, 100 vs 40 micron on 8-m)
- Scintillation at 3000-m, airmass 1.5

Topics

- Research Opportunities
 - Occultations & other topics
- Light bucket astronomy
 - Light bucket theory
 - Relative SNRs
- Optical Technologies
 - Light bucket mirrors
 - Correctors
 - Evaluations of other new technologies
- Instrumentation
 - Area and diaphragm detectors

Light Bucket Mirrors I

7" pneumatic mirrorComplex interferograms

Light Bucket Mirrors II

12" pneumatic mirrorVega (w/no correction)

Light Bucket Mirrors III

Our first 1-meter light bucket...

Starstone evaluation I

Mirror 0001A 8" f/2.25

Starstone evaluation II

Mirror Analysis	
Generate Mirror Report	
Interferogram Wavelength 632 nm Dia Analysis Wavelength 550 nm Target C	RoC of Mirror 957 mm meter of Mirror 213 mm O Surface Error in Namometers conic Constant 0 Image: Wavefront Error in Waves
Wavefront Error in Waves at 550 nm	Wavefront Error in Waves at 550 nm
2.5	5
	5 1
	5 0.75
	5 0.25
0.25	
Generate Contour Plot	Angle from X-axis 0 degrees
Mirror Performance	Graph Section through Mirror Center
At 550 nm RMS Wavefront Error 1/2.31 waves Strehl Ratio 6.31e-4	-3 Cefocus in Waves 0
Best Fit Conic Constant 0.0561	View/Select Zernike Coefficients Edit Zernike Averaging List Close

Starstone evaluation III

Cooling after 30 sec. warming with heat gun

7:32:26pm

7:32:54pm

7:33:52pm

Starstone evaluation IV

- Corrector used— 50-mm projection lens
- Hubble optics 5-star flashlight 50 to 250 micron
 - "stars" @11-m
- 180" no correction

• 25" – with correction

Peacock Labs I

 Cold silvering processes
 Located in Philly
 8 calibrated mirrors to be coated with their various products

Treat I man was 21

-Mirror Performance-

At 550 nm RMS Wavefront Error 1/23.6 waves Strehl Ratio 0.931

Best Fit Conic Constant -0.698

Other Potential LBT Mirrors

- Edmund 24" parabolic
- Aluminum 0.04"
- f/0.25
- 1.5" central hole
- Low reflectivity (not "precision polished")

Correctors

- Spherical aberration: f/4, f/2, even f/1
- One & two spherical lens designs (offthe- shelf)
- Slumped meniscus
- Projection lenses with aspherics

Dave Rowe's 1-m, f/4 Corrector

Optimize Curvature SC Statistics 437/7281 Spacing Corrector Corrector	Ie-5 Trace 0.001 I✓ Auto Focus EFL 4046.5 0.002 Polychromatic f/D 4.047	Wavelengths (nm) Red 1750 Green 550 Blue 420	FOV 0.2 Off-axis Angle (deg)	Auto Scale 1.02" per #
0 Object Distance 1e20 Diameter 1000	4 Focal Surface Radius 1e20 Opt		Off-axis Distance 0 Trans (%) 100 RMS Size 4.004e-4	
1 Mirror Radius 7950 C Opt	Fit On Sceen	gle2 Rays 7	Optimizer Weight	
Diameter 1000 □ Opt			0ff-axis Angle (deg) 0.05 Off-axis Distance 3.546	
2 Lens BK7 Radius 1 →139.98 ▼ Opt Thickness 5 ■ Opt Radius 2 228.992 ▼ Opt			Trans (%) 100 RMS Size 0.01993 Optimizer Weight	
Diameter 75			1 Off-axis Angle (deg)	
3 Lens BK7 Radius 1 80.2317 ▼ Opt Thickness 6 □ Opt Radius 2 98.4438 ▼ Opt			0.0715 Off-axis Distance 5.068 Trans (%) 97.79	
Diameter 75 Spacing 269.833		•	RMS Size 0.03702 Optimizer Weight	

Tong Liu's f/4 design on f/2 8"

1-m f/4 BK4

40

1-m f/4 Plastic

Optimize Curvature Statistics 0/122 Spacing Error 77.051 um Corrector	Ie-5 Trace 0.001 I Auto Focus EFL 4706 0.002 Polychromatic f/D 4.706	Wavelengths (nm) Red [656.3 Green 587.6 Blue [486.1	FOV 1 Off-axis Angle (deg)	Auto Scale 4.38" per #
O Object Distance 1e20 Diameter 1000 Spacing 0 □ Opt 1 Mirror	Fit On Sceen		Off-axis Distance 0 Trans (%) 100 RMS Size 0.06108 Optimizer Weight 1	
Radius 7950 □ Opt SC 0 □ Opt Diameter 1000 □ Opt Spacing 3705.32 ✓ Opt 2 Lens PBH3 Radius 1 -140 □ Opt Thickness 20 □ Opt Radius 2 -160 □ Opt Diameter 150 □			Off-axis Angle (deg) 0.05 Off-axis Distance 4.191 Trans (%) 100 RMS Size 0.09321 Optimizer Weight 0.5	
Spacing 324.624 ♥ Opt 3 Focal Surface Radius 1e20 Opt			Off-axis Angle (deg) 0.1 Off-axis Distance 8.385 Trans (%) 100 RMS Size 0.156 Optimizer Weight 0.1	

1-m f/2 Plastic

1-m f/4 Meniscus

Aspherics

- Olive3 is out-ofdate
- Projection lenses
 - Movie
 - LCD ~f/2
 - Rear Proj. TV ~f/1

Telescope 1/f = 1/D1 + 1/D2, D2 negative

Gaussian Kernel I

Moon image from web

50x50 Gaussian Kernel applied to approximate f/4

Above : Russ's 1-m f/4 w/no correction

With 4x reduction expected from Tong Liu's corrector design

Gaussian Kernel II

- Albirio pair 35" apart
- Middle and right images correspond to the lunar ones on the previous slide.

Deformable Mirrors I

Goals

- Active, not adaptive, correction for LBTs
- Low-cost & replicable
- Explore relationship between prediction and experiment
- Current State
 - Deformable Newtonian secondary 45°
 - 40 actuators

Deformable Mirrors II

Controller

Deformable Mirrors III

- Re-used old
 ISA OKO
 boards
- USB
 µChameleon
- 500Hz update rate
- 40-channel
- o-200v Out

Deformable Mirrors IV

- HV amp: o-3v in, o-200v out
- 500Hz update rate
- MPSA42 @ \$0.05ea.
 Qty. 2k

R1, 47k 1% R2, 2.7k 1% R3, 270k 1% R4, 2.7M 1% R5, 47k 1% R6, 47 1% C1, 151k Pf T1, MPSA42 NPN (300v) IC1, LM348

Deformable Mirrors V

- Zernike orthonormal functions
- Closed loop
 - Wavefront sampling
 - Active correction
- Open loop
 - Minimize PSF (simulated annealing)
 - Lookup table

Deformable Mirrors VI

Topics

- Research Opportunities
 - Occultations & other topics
- Light Bucket Astronomy
 - Light bucket theory
 - Relative SNRs
- Optical Technologies
 - Light bucket mirrors
 - Correctors
 - Evaluations of other new technologies
- Instrumentation
 - Area and diaphragm detectors

Fast Detectors

Requirements

- Low noise, high sensitivity
- 300Hz BW & up
- Affordable/replicable
- Fast Area
 - CCD & CMOS
 - Binning/Region of interest processing
 - GigE interface
- Fast diaphragm-limiting photometry
 - Silicone, InGaAs, PMT
- High Time Resolution Astronomy (future)

Detectors – Fast Area

Brand/products

- SuperCircuits 164CEX-2 (CCD)
- Opticstar PL-131 (CMOS)
- JAI/Pulnix TM-6740GE (Kodak KAI-0340 CCD, GigE)
- Many others: Cook Corp, MallinCam, Vision Research, Point Grey, Dalsa, Optronics, Xenics, Allied Vision Tech, Photon Focus, Qimaging, DRS Data & Imaging, Imperex, Prosilica, Watec (Wat-902H2 Ultimate), Lumenera (SKYnyx2-2), Astrovid (Stellacam)

PULNIX

Gigabit Etherne

Diaphragm-limiting

Current state

- 5kHz BW transimpedance amplifier
- Visible (Si) Diodes (IRD UVG100, Optec SSP-3)
- Visible (PMT) (Optec SSP-5A)
- Port of FCO PBPHOT software underway

High Speed Electrometer I

High-Speed Electrometer II

Electrometer parts

R1 – has to be modest to maintain BW

			_						
Resistor	Value (ohms)	Capacitor	Value (Farads)	Op Amp	Value	Battery	Value (volts)	Diode	Value
R1	5G, 1%	C1	.1u	IC1	LMC6081	B1	6	D1	LED - 10mA
R2	5k, 1%	C2	.1u	IC2	OPA621	B2	6	D2	ZENER - 9v
R3	5k, 1%	C3	.1u	IC3	OPA621				
R4	50k, 1%	C4	.1u						
R5	500k, 1%	C5	.1u						
R6	5M, 1%	C6	3u						
R7	50M, 1%	C7	3u						
R8	100, 5%	C8	.1u						
R9	50k, 5%	C9	.1u						
R10	50k, 5%	Cf	R1/Detector specific	-see LMC6081 s	pec.				
R11	100K, 5%								
R12	10k, 5%								
R13	10k, 5%								
R14	50, 5%								
R15	300, 1%								

PARTS LIST

Future HTRA experiments

Three 12-cell Hamamatsu R1463P PMTs LeCroy 6100A samples at 10GS/s NVIDEA CUDA GPU for photon correlation

Future experiments

Oriel M125 Spectrograph (1/8 m)

Contact & More Information

Bruce D. Holenstein bholenstein@gravic.com

More details see: 2010 *Lightweight Alt-Az Telescope Developments*, ed. R. Genet, (Payson, AZ: Collins Foundation Press) 2011 (scheduled) *Light Bucket Astronomy*