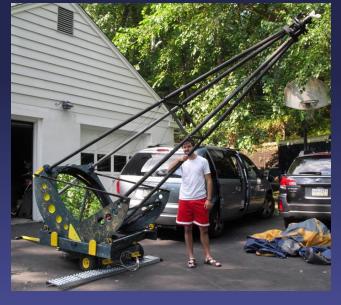
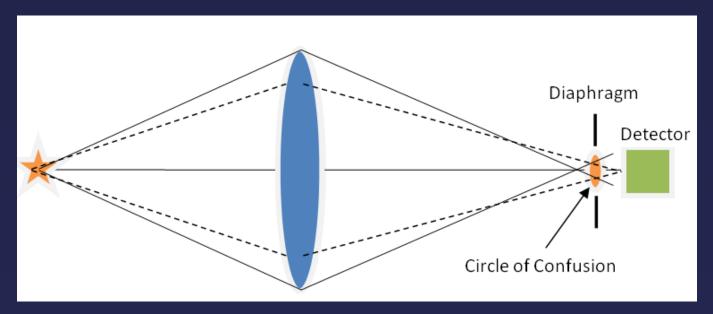
Optical Testing of Light Bucket Mirrors

Bruce Holenstein and Dylan Holenstein Gravic Labs, Malvern, PA

Small Telescopes and Astronomical Research (STAR III) Conference


Lander University, Greenwood, South Carolina June 6-7, 2014

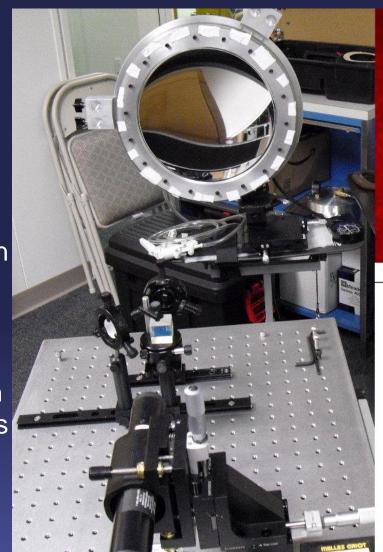
Some Mirrors Tested

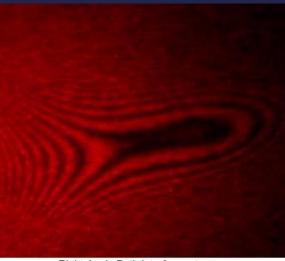


Tests & Measures

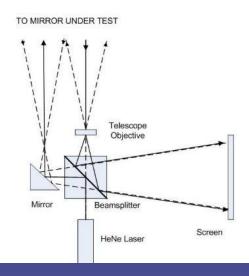
- Foucault, Ronchi, Interferometry, Artificial star PSF
- Physical parameters
 - Materials, Weight, Usable D, CTE, Focal Length and F/#
- Figure (conic)
- Aberrations present & magnitude: P-V, Strehl
- Smoothness
- Reflectivity

Circle of Confusion

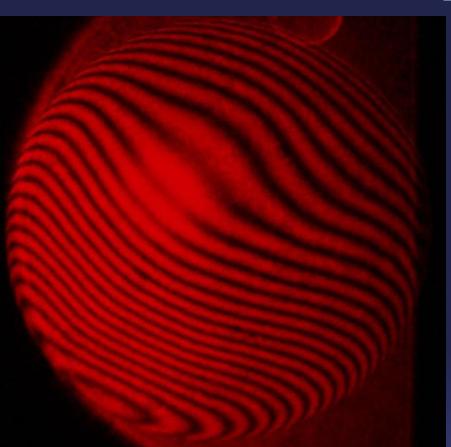

- Circle of Confusion = blur spot at focal plane
- Diaphragm = circular isolator before the detector



Vega – 12" pneumatic mirror, 1' dia.


Aberration Characterization

- Zone-sampling with a Right-angle Bath Interferometer
- Analysis produces
 Zernike representation of wavefront , W(ρ,θ)
- Stitching and statistical combination of sample zone results

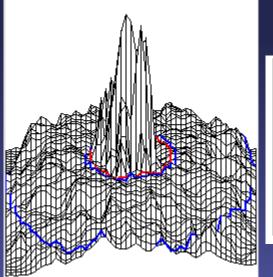


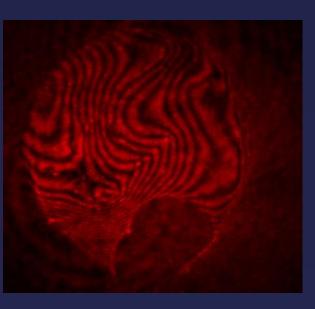
Right-Angle Bath Interferometer

OTF Designs – Starstone 8" f/2.25

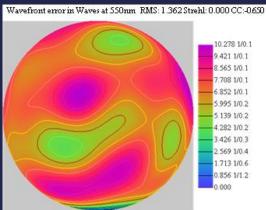
■ Mirror 0001A 8" f/2.25

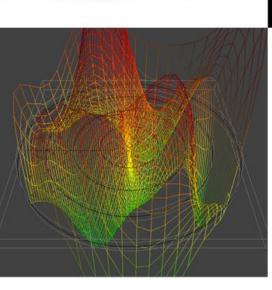
Lander 10" epoxy f/3.7 No. J1R-I-147



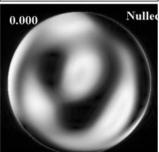

3-layer, weight – 2lbs.

5-in. mask best focus at RoC

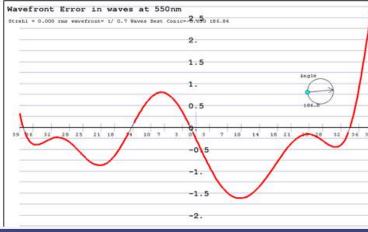



	16 pixel dia.	50 pixel dia.	Total
	"core"	"disk"	
Pixel counts	22564	101318	123882
Encircled energy	18.2%	91.8%	100%
PSF diameter	0.085 milliradians	0.27 milliradians	
	3 arc min.	9 arc min.	
RMS surface	0.018 milliradians		
slope (S _{rms})	(1.3 waves/radius)		

Lander 10" f/3.7 No. J1R-I-147



iGram of central 3.125"



Mirror Default Igram Wavelength: 632.0mm Diameter = 79.38 mm ROC = 1879.60 mm Best Conic=-0.650 Desired Conic: -1.00 Strehl=0.000 Artifical Null: 0.025 mms wavefront=10.7 1.362

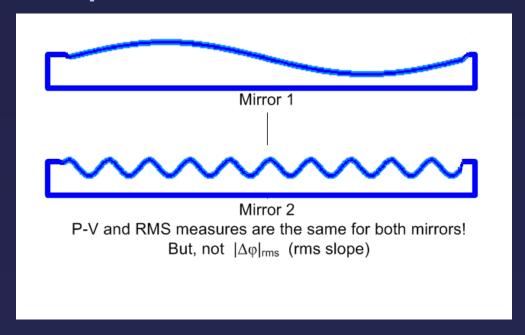
Zemike Tems		WaveFr	ont
	(Wyant)	RM:	3
Piston	9.410	10.813	Disab.
XTilt	7.670	4.407	Disab.
Y Tilt	-4.482	2.575	Disab.
Defocus	1.877	1.245	Disab.
X Astig	-3.411	1.600	Disab.
Y Astig	1.263	0.592	Disab.
X Coma	-1 259	0.511	Disab.
Y Coma	-2.487	1.010	Disab.
Spherical	0.009	0.004	
X Trefoil	0.515	0.209	
Y Trefoil	0.840	0.341	
X 2nd Astig	0.844	0.307	
Y 2nd Astig	1.085	0.394	
X 2nd Coma	-0.157	0.052	
Y 2nd Coma	2.251	0.747	
2nd Spherical	0.181	0.078	
X Tetrafoil	-0.439	0.160	
Y Tetrafoil	0.479	0.174	
2nd X Trefoil	0.668	0.221	
2nd Y Trefoil	-1.498	0.497	
3rd X Astig	0.276	0.085	
3rd Y Astig	-1.133	0.348	
3rd X Coma	1.013	0.291	
3rd Y Coma	-0.425	0.122	
3rd Spherical	-0.056	0.022	

Lander 11" *f*/1.75 No. KLB-157 (rotated)

Central 7.75" rotated CCW 90 deg.

Artificial Star PSF

- Hubble Optics 5-star flashlight used for illumination. The apertures are precision holes of 50/100/150/200/250 microns.
- Mirror 8" Starstone f/2 @ 11-m

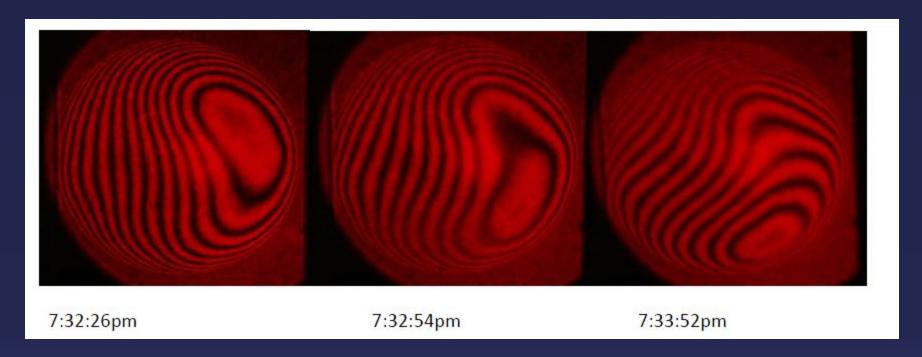

180" – no correction

25" - with correction

RMS Slope Characterization

 Traditional quantification such as P-V and Strehl Ratio may not be helpful for light buckets

Holenstein et. al. 2010


PSF size from slope error & aberrations

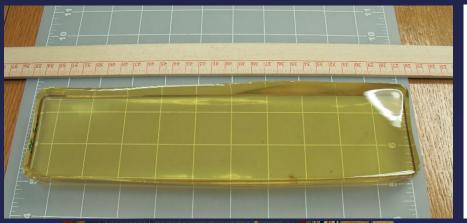
- FWHM spot size = $4.70 \times S_{rms}$
 - Where S_{rms} is the rms slope error
- FWHM spot size (arc sec) ≈ 10⁶ E /D
 - Where D is the aperature, E ~ peak aberration present

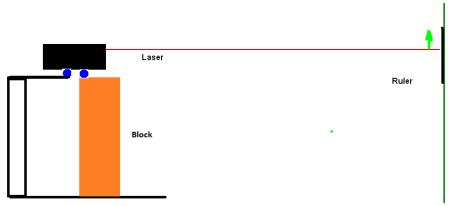
Example:

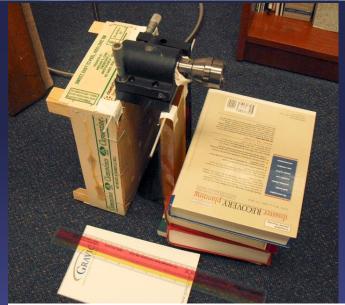
- One wave of astigmatism in the visible on a 1-m mirror corresponds to about an arc second FWHM spot (and vice versa)
- But note higher order aberrations are much worse!

CTE - Starstone (8")

Cooling after 30 sec. warming with heat gun


CTE Part II


ww.gravic.com

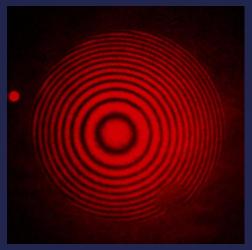

Lander 1-m after night in cold weather

Measuring CTE

$$CTE = \frac{\Delta h}{H \Delta T}$$
 where *H* is the block height and

$$\Delta h = \frac{Max \ deflection \ x \ Rod \ separation}{Distance \ to \ wall}$$

	Max Def.(cm)	Δh (mm)	H (mm)	$\Delta T (^{o}C)$	CTE (ppm/°C)
Sample 1	17.1	0.60	265	37.2	60.8


Coatings and Reflectivity Tests

- Cold silvered (4) verify Strehl
- Extra Thin Peacock Labs Permalac coated (3)
- Flats (2 each) test reflectivity

Coating Tests II

- Just silvered very fine (confirmed)
- Extra Thin still not thin enough

Silvered

Extra Thin Permalac

	BEFORE COATING		AFTER SILVERING	
	RMS Wavefront		RMS Wavefront	
	Error (waves @		Error (waves @	
Mirror #	550nm)	Strehl Ratio	550nm)	Strehl Ratio
No overcoat				
20	0.031	0.963	0.001	0.962
22	0.120	0.567	0.071	0.821
24	0.073	0.812	0.065	0.847
26	0.080	0.778	0.099	0.680
Extra-thin overcoat				
5	0.042	0.933	0.088	0.735
21	0.085	0.753	0.199	0.211
36	0.083	0.760	0.285	0.040

Contact and further information

- Email: <u>bholenstein@gravic.com</u>
- Gravic Labs Papers (source for many pictures):
 http://www.gravic.com/graviclabs/rd/astronomy/papers.html
- Alt-Az Telescope Initiative Website: www.AltAzInitiative.org
- Bath interferometer:

http://starryridge.com/mediawiki-1.9.1/index.php?title=Bath_Interferometer

Yahoo Discussion Groups:

http://groups.yahoo.com/group/AltAzInitiative http://groups.yahoo.com/group/Interferometry