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Introduction
Aberrations of the surface of a mirror have multiple expressions. “Light 
bucket” mirrors challenge traditional Gaussian- and diffraction-orient-
ed aberration theory due to large amplitude, caustic ray-crossing aber-
rations. Typical light bucket mirrors may be made of metal, epoxy, foam 
glass, tessellated segments, and other techniques (Genet 2009) and have 
many waves of aberration. What is needed is a method to characterize 
the suitability of light bucket mirrors for an intended purpose, whether 
that be diaphragm-limiting photometry, lunar occultations, intensity 
interferometry, Cherenkov radiation detection, or other non-astronomi-
cal uses such as solar power collection. (Note that we utilize the familiar 
alternate term “diaphragm” to signify the typically circular isolator 
located in the focal plane before a photomultiplier cell or photodiode 
detector.  The word “aperture” has too many astronomical uses.)

A mirror surface that will satisfy an astronomical observing pro-
gram will collect photons from the stellar or other program object and 
deliver them to the detector, yet exclude enough foreground/back-
ground photons so as to yield an acceptable signal-to-noise ratio (SNR). 
Herein several figures of merit are developed for light bucket mirrors 
dedicated to astronomical use.

We intend this chapter to be the theoretical, analytical background 
for our second chapter that follows in a later section of this book (Ho-
lenstein et al. 2010), and also a general contribution which applies to all 
highly aberrated mirrors. 

Circle of Confusion
With high-quality mirrors, a standard procedure is to calculate a 

peak-to-valley (PV) criterion or Strehl ratio (SR) for a mirror surface. A 
PV value for a mirror is simply the difference between the highest and 
the lowest aberrated wavefront points on an optical surface; PV values 
of ¼ wave or better yield acceptable images for essentially all cases. A 
far better measure of optical surface quality is the SR, which computes 
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the peak intensity of the light within the Airy disk of a point source 
compared to the theoretical maximum delivered by an ideal optical 
system. An approximation to the SR is given by the Maréchal formula:

                                    	 									(1)

where the root-mean-square (rms) wavefront aberration σ, is measured 
in waves. This form of the formula is good for SRs down to only about 
0.5. Adding a few additional terms to the SR expansion does not help 
compute meaningful ratios when aberration is extremely large.

With light bucke  telescopes collecting photons from point sources 
rather than from extended sources, imaging is relatively unimportant, 
so the foregoing mirror surface parameters are not as useful as they 
should be. Instead, the characterization of the point spread function 
(PSF) due to transverse aberrations that matters in this case is the blur-
spot diameter of the program object at the focal plane, also identified as 
the Circle of Least Confusion or just the Circle of Confusion (CoC).

All optical systems have a certain angular resolution. The human 
eye, for example, has a resolution of about 1’ for a person with 20/20 vi-
sion. The depth of field of an optical system is known from the distance 
that the head may move backward and forward and yet have the blur 
spot remain smaller than the resolution of the eye. Typically, photoelec-
tric detectors look through focal-plane diaphragms (with or without 
intervening imaging) of the order of a few millimeters diameter and 
are used on telescopes with focal lengths of the order of meters. For 
example, a telescope with a focal length of 1 m with aberrations that 
create a blur spot of a milliradian (about 3’) in diameter will exclude 
few photons that fall outside a 1 mm focal plane diaphragm. Inversely, 
given the focal length and mirror diameter, the problem is to charac-
terize the maximum surface aberrations that will produce a CoC that 
yields an acceptable SNR when imaged on the detector.

Aberration Characterization
All mirrors are plagued by both systemic and local sources of aberra-
tion. Systemic aberrations often result from design flaws in the figuring 
or support of the mirror. An improperly supported mirror may, for 
example, have a correctible astigmatism that extends over the entire 
mirror surface and an improperly figured mirror may have a spherical 
aberration or astigmatism that can be corrected with secondary optics.

In the case of light bucket mirrors having multiple waves of aber-
ration, coherence of the wavefront is not maintained at the focal plane. 
Also, reflected rays may cross, making the application of traditional 
Gaussian optics and Seidel aberration theory problematical (Born and 
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Wolf 1999, 236-244). Since the aberrations of light bucket mirrors are 
extensive and have varying expressions across the mirror surface, a 
productive way to evaluate such mirrors is with a statistical approach. 
This approach divides the mirror into zones, analyzes representative 
samples of the zones, and then collates the samples into an overall ex-
pectation of the mirror figure of merit.

In our current program, we sample the quality of zones across 
an unobstructed mirror surface using a right-angle Bath Interferom-
eter, and an interferogram analysis software program called Fringe 
XP (Rowe 2003) is used to calculate the Zernike coefficients of the 
interferograms made with the device. In practice, almost any type of 
interferometer and fringe analysis software may be used as long as the 
output is a reasonable representation of the mirror figure. The Zernike 
coefficients are the wavefront errors (in waves) applied to the Zernike 
circle polynomials, the first few of which are copied into Table 1 (Wil-
son 2007, 288-293; Schroeder 2000, 264-265).

In the table, a parameter pair, (n,m), defines the form of a Zernike 
polynomial from the generating function (Wyant et al. 1992), A  i is the 
unnormalized Zernike coefficients (note that “Z		i” nomenclature is used 
in FringeXP), ρ is the fractional radius, and θ defines the azimuth angle 
about the face of the mirror. As is apparent, these low-order Zernike 
coefficients are useful because they correspond closely to the types of 
problems that mirror makers typically experience—astigmatism, coma, 
and spherical aberration. The FringeXP software also yields an rms mir-
ror surface quality, σ, consonant with a desired conic section. Spherical 
surfaces are usually easier to fabricate, so for most of our explorations 
we have used a spherical conic section, e = 0.

For a spherical primary surface, the principal aberration is usually 
spherical, which produces a CoC between the paraxial and marginal 

Table 1:  Zernike Polynomials

(n,m) Polynomial Type

(0,0) A0 Piston
(1,1) A1 ρcosθ A2 ρsinθ X,	Y	Axes	Tilt
(1,0) A3		(2ρ2-1) Defocus	(power)
(2,2) A4 ρ

2cos2θ A5 ρ
2sin2θ 0º,	45º	Astigmatism

(2,1) A6 	(3ρ2-2) ρcosθ A7	(3ρ2-2) ρsinθ X,	Y	Axes	Coma
(2,0) A8	(6ρ4-6ρ2	+	1) Principal	Spherical
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rays with an angular size given by (Schroeder 2000, 57):

                                          	 	 (2)

where f is the focal ratio. An f/2 spherical mirror produces spherical 
aberration of about a milliradian. Either a greater focal ratio or a static 
spherical corrector lens system may be used to minimize this systemic 
aberration if the conic section cannot be shifted toward a parabola. 

Next, we consider the CoC caused by random mirror-height 
variations using geometrical optics. Light entering a telescope from 
infinity and striking a spherical mirror surface comes to a focus at a 
distance of  where Ro is the nominal radius of curvature. 
However, for a real light bucket mirror, different areas of the mirror 
will focus light at different effective focal lengths due to the numer-
ous aberrations afflicting it. In general, rays that strike the surface at 
an area experiencing +σ waves aberration above average will come to 
a focus at  and likewise rays that strike the surface 
at an area experiencing -σ waves aberration will come to a focus at 

. Thus, 68% of the photons striking the mirror will 
come to a focus within σ), 95% within σ), 
and 99.7% within σ).

A rough approximation to the diameter of the CoC may be derived 
geometrically from the focal ratio and the multiple, n, of σ that corre-
sponds to the desired encircled flux fraction:

              		 (3)

Note that there are many other aberration sources besides the 
normally-distributed aberration caused by surface height errors. In 
particular, the local slope and micro-roughness of the reflecting surface 
may or may not be small-amplitude Rayleigh-distributed. Errors of this 
kind can result from various systemic or isolated defects in the mirror 
shape or surface substrate. Specifically, two important manifestations 
of large transverse aberrations result from local slope deviations from 
the ideal slope in the radial and azimuthal directions. A local slope flaw 
with a value of Δφ causes photons to reflect from the local area devi-
ated by 2|Δφ|. If the local slope aberrations are Rayleigh-distributed 
with root-mean-square value |Δφ|r	m	s , 39.3%, 86.4%, and 98.9% of the 
flux is contained in a CoC blur spot with an angular radius of 2|Δφ|r	m	s, 
4|Δφ|r	m	s, and  6|Δφ|r	m	s	, respectively, for 1, 2, and 3 standard devia-
tions in the continuous Rayleigh distribution function. The diameter of 
the CoC at the focal plane due to local slope transverse aberrations is 
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a direct function of focal length, F, and the multiple, n’, of |Δφ|r	m	s that 
corresponds to the desired encircled flux fraction and is given by:

                																			(4)

In order to estimate |Δφ|r	m	s, we must first consider the formal 
Zernike wavefront representation.

Zernike Wavefront Representation
Each author uses his individual nomenclature and normalization for 
the Zernike polynomial representation. Mahajan (2007) presents the 
following nomenclature and equations for the wavefront as a function 
of the non-rotationally-symmetrical Zernike polynomials, Zj, and ex-
pansion coefficients, aj:

													(5)

where the polynomials are written:

m	=	0		 (6)

m       (7)

m							 (8)

The indices n and m are positive integers and also include zero, 
, and ρ, θ are defined on the unit circle. The radial polyno-

mials are given by:

	

The above representation of the Zernike polynomials is orthonor-
mal as follows:

where δjj’ is the Kronecker delta function. As a result, the representation 
for the aberration variance is very simple:
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The first fifteen Zernike orthonormal polynomials are represented 

in Table 2 along with the notation (Wyant et al. 1992) and the normal-
ization factors needed for the FringeXP Zernike coefficients to match 
expansion coefficients used in equation (5).

Zernike Polynomial Gradient
The gradient vector of the wavefront representation presented in equa-
tion (5) is given by:

												(12)

where eρ and eθ are the unit vectors in the radial and azimuthal direc-
tions respectively. The mean-square wavefront gradient norm over the 
unit circle is:

	
The physical rms transverse gradient of the surface aberrations is 

found from the following equation:

where D is the diameter of the mirror or zone that can be tested. Both 
the numerator and the denominator must be expressed in the same 
units, for example, waves. Substituting into equation (4), one finds that 
the local slope-induced CoC is then:

where the rms gradient is given in units of distance over the unit circle, 
usually in waves. 

Estimation of  is eased with the recognition by South-
well (1982) that the gradients of higher Zernike terms in equations (6), 
(7), and (8) may be expressed in terms of lower Zernike polynomial 
terms. The integration over the unit circle of the square of the norm 
in equation (13) then is simplified by the orthonormality relationship 
expressed in equation (10).  

A direct calculation of the individual Zernike gradients using Car-
tesian coordinates is found in Table 8.3 of Hardy (1998, 277-279). Braat 



279Figures of Merit for Light Bucket Mirrors

(1987) provides a direct derivation for the variance of the transverse 
gradient norm in terms of Zernike coefficients. Braat’s equation B3 is 
expressed as follows using terms and normalizations compatible with 
equations (5) through (9) in this chapter and Table 2: 
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With normalizations appropriate for the FringeXP program, the 
rms wavefront gradient is estimated using the first eleven Zernike 
coefficients by:

					 	 	 	 	 	 	(17)

	
To reduce the effects of local slope errors on the CoC, a fast design 

may be chosen if it may be assumed that the spherical aberration iden-
tified in equation (2) can be correspondingly reduced or eliminated by 
secondary optics. In any case, the diameters of the CoC given in equa-
tions (3) and (4) must be interpreted as lower limits to actual experience 
in the lab or dome or field.

One can specify the approximate wavefront aberration limit due to 
surface height flaws as follows:

	 	 				
																																																																																												(18)

So in order to concentrate 99.7% of a source’s photon flux within 
the blur circle falling on the detector for a detector diaphragm of 1.0 
mm and focal ratio of 2.0, an astonishing 1.3 mm rms of smooth aberra-
tion is permissible. Such a value corresponds to 2,600 waves at 500 nm. 
For the local slope aberrations case, the rms wavefront gradient norm 
limit is the following:

                        

In this case, for the same detector diaphragm, wavelength, and 
focal ratio, the rms gradient norm limit is about 42 waves in order to 
concentrate 98.9% of a source’s photon flux within the blur circle falling 
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on the detector. This latter design criterion is generally harder to meet 
than the σlimit, especially for mirrors with surface ripples, except in 
the case of high-quality, tessellated mirrors which may be mounted at 
different heights.

Until the actual PSF of the optical system is measured, a design fac-
tor of 5 to 10 should be factored into the calculated upper limit of the 
aberrations because of the unknown surface contributions to them. In 
the example given, the design limit should be 300 to 600 waves rms sur-
face height aberrations, with a rms gradient norm of just 4 to 8 waves 
for a light bucket mirror. For star fields at high galactic latitudes and 
for programs concentrating on bright objects, the optical system just 
characterized will be sufficient to avoid accidental errors due to over-
lapping focal plane images. Even with panoramic detectors and with 
the same constraints, this conclusion remains unchanged.

Figures of Merit
For a given optical configuration and detector diaphragm, how will 
mirror aberration affect the SNR of program object measurements? It 
is necessary to consider the program object photons that are counted 
compared to the counts of the shot noises from the star and sky fore-
ground/background, detector noise, and scintillation (Schroeder 2000, 
433; Howell 2006, 73-77):

	 (20)

where the sky measure is assumed to be made with the same effec-
tive detector diaphragm as the program object, and S models the 
scintillation noise.

With the approximation provided in equation (3) for surface height 
aberrations, the signal from the program object alone depends on the 
detector diaphragm and the mirror surface quality:

	 	 (21)

where the constant, FStar, represents the flux collected by the telescope 
from the program object. The error function, erf, applies because equa-
tion (3) is based on a normally-distributed random variable with one 
degree-of-freedom. 

 The sky foreground/background noise flux incident on the detector 
diaphragm is proportional to the squared diameter of the diaphragm:
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																	(22)

where the constant, KSky, is expressed in terms of flux per steradian.
Figure 1 shows the normalized SNR as a function of surface 

height aberration for different size detector diaphragms used with a 
1.6 m mirror having a focal length of 3.0 m at 500 nm wavelength and 
with a foreground/background that is bright compared to the star 
and detector noises.

	
Figure 1: SNR figures of merit for sample cases of different sized 
diaphragms as a function of random surface height aberration where 
a bright point source is imaged by a 1.6 m f/1.9 mirror. The plots are 
normalized to the case of the mirror with no aberration. A similar plot 
may be created for the rms gradient norm aberration.

One sees from this illustration that large mirror aberrations 
significantly reduce the SNR compared to a perfect mirror. For ex-
ample, a detector with 10 μm pixels is totally unsuitable even when 
the aberration is modest unless binning, say 100 x 100 pixels, defines 
the area of the CCD detector used for counts of the program object 
and sky background. What is particularly interesting from the fig-
ure is that there is a knee in the fall-off of SNR for relatively large 
amounts of mirror aberration with larger detector diaphragms. For 
the specific example in the figure, 2500 waves rms aberration with 
a 1 mm detector diaphragm yields little reduction in the SNR and 
5,000 waves aberration reduces the SNR by a factor of only about 
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15%. For bright program objects and long integration times yield-
ing a high intrinsic SNR, one may decide that even larger mirror 
aberrations are permissible.

The Full Width Half Maximum for a normally distributed variable 
is given by . A Gaussian PSF is two di-
mensional and has a Rayleigh cumulative distribution function given 
by .  Therefore, with this type of PSF form, a radius 
of 0.5(FWHM) (i.e., one HWHM) encircles 50%, a radius of 1.0(FWHM) 
encircles 93.7%, and a radius of 1.5(FWHM) encircles 99.8% of the flux. 
The last value is considerably less than the 3.0(FWHM) conservative 
value Howell (2006, 116-117) gives for 100% of the flux. No matter what 
the factor, for the sample case given in Howell, how does the SNR relate 
to diaphragm size for highly aberrated mirrors? Figures 2 and 3 are 
graphs of the SNR given by equation (20) for stars of different bright-
ness for the cases of 2500 waves rms surface height and 10 waves rms 
wavefront gradient norm aberrations at 500 nm. The SNR is plotted as 
a function of detector diaphragm diameter for four different apparent 
brightness stars (8th, 12th, 16th, and 20th magnitudes) in relation to 
a 21st magnitude per square arc second background imaged by a 1.6 
m f/1.9 mirror, a 10 second integration, and 15% overall collection ef-
ficiency. Scintillation is modeled using equation (1) of Young (1967) at 
an elevation of 1000 m, and an air mass of 1.5.

Figure 2: SNR as a function of detector diaphragm diameter for four 
different apparent brightness stars (8th, 12th, 16th, and 20th magnitudes) 
in relation to a 21st magnitude per square arc second background 
imaged by a 1.6 m f/1.9 mirror with 2500 waves rms surface height 
aberration. Scintillation is estimated for an elevation of 1000 m and an 
air mass of 1.5, with other parameters as described in the text. 
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Figure 3: SNR as a function of detector diaphragm diameter for four 
different apparent brightness stars (8th, 12th, 16th, and 20th magnitudes) 
in relation to a 21st magnitude per square arc second background 
imaged by a 1.6 m f/1.9 mirror with 10 waves rms gradient norm 
aberration. Scintillation is estimated for an elevation of 1000 m and an 
air mass of 1.5, with other parameters as described in the text.

For both forms of aberration shown in Figures 2 and 3, the SNR 
grows as the diaphragm increases but eventually turns over as the 
shot noise contribution from the sky overtakes the signal flux. The 
plots for the fainter objects illustrate that light bucket mirrors are not 
desirable for use with low contrast objects. The SNR of near 750 for a 1 
mm diaphragm with a bright object drops by about 50% for an object 
4 magnitudes fainter. Note that the peak SNR moves to the left in the 
direction of smaller diaphragms for fainter objects, much as a damped 
harmonic oscillator experiences a frequency increase. For variable star 
radiometry a compromise between detector diaphragm sizes for the 
star, comparison, and check stars must be struck if the stars differ in 
brightness by considerable amounts.

Combining Results
In order to use equations (3) and (4), actual light bucket mirrors may 
need to be analyzed in zonal areas and then the results combined math-
ematically. Uncorrelated waveform aberrations add in quadrature. The 
overall rms waveform aberration may be calculated from the contribu-
tions of various interferograms taken over subareas, AS , of the mirror 
surface, adjusted to the interferogram taken at the center: 

 	 (23)	
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An alternate approach using the blur spots of zonal regions may be 
added as follows:

	 (24)	

Use of equation (24) requires that the focal ratios of the individual 
zones, and not the entire mirror, be used in equations (3) and (4). 

Note that actual results of using equations (23) and (24) will vary 
depending on the degree to which the aberrations of different zonal 
subareas are in fact independent and add in quadrature.

An overall strategy for light bucket mirrors is to use the focal ratio 
which minimizes equation (24) for the main highly aberrated primary 
mirror, and then to use high quality focal reducer and spherical correc-
tor optics to improve the character of the PSF. For instance, using a f/2 
spherical mirror instead of a f/4 spherical mirror will reduce the CoC 
blur spot caused by local slope aberration issues by a factor of two, but 
it will also increase the spherical aberration by a factor of 23, or 8. Figure 
4 shows the effect of a combined CoC blur spot from spherical, surface 
height, and local slope aberrations as a function of focal ratio.

Figure 4: CoC blur spot size as a function of f/ratio for a 1.6 m spherical 
mirror with 2500 rms waves of surface height and 10 rms waves of 
gradient norm local slope aberrations. The symbols dSph, dSH, and 
dLS are the CoC blur spots from spherical, surface height, and local 
slope aberrations, respectively, and the total aberration includes all 
three sources added in quadrature. The surface height and the local 
slope CoC blur spots are three standard deviation sizes.

Figure 4 shows that systemic spherical aberration dominates the 
CoC blur spot size without secondary correcting optics for this example. 
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The crossover between surface height and local slope aberrations moves 
to the left as surface height aberrations diminish.

Secondary optics which correct for systemic spherical aberration 
may be much easier to fabricate than secondary optics for complicated 
surface height and local slope aberrations if the resultant CoC blur spot 
is still larger than the desired tolerance limit.

Also, note that high frequency surface defects, such as microripples 
causing diffuse reflection, do not have a ready solution. One must select 
the best substrate possible and polish out these problems if possible. 
In other words, light bucket mirrors may have considerable low-spa-
tial frequency problems of manufacture or support which are fixable 
by mechanical adjustments of the primary mirror and/or secondary 
static-, active-, or adaptive-optics of one form or another. High–spatial 
frequency problems, on the other hand, have no ready solution which 
is economical in comparison to the cost of the light bucket mirror itself. 

Telescope Tracking Errors
Telescope tracking errors make a program object drift across or even 
out of the detector diaphragm. Software that processes a CCD image 
may be able to compensate by moving the readout window on suc-
ceeding images. In contrast, diaphragm photometry with a single 
photodiode or photomultiplier detector will suffer unless re-centering 
of the program object occurs frequently. This is inherently a mechani-
cal/electrical problem and not an optical one.

For light bucket mirrors the PSF extends far beyond the Airy disk. 
Figure 5 illustrates how flux is lost on one side yet gained on the other 
side of a drifting circular-shaped diaphragm. 

Figure 5: A circular diaphragm gains some program object flux as it 
drifts due to tracking errors. However, more flux is lost than gained due 
to the drift so there is always a net decrease in program object flux.
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Figure 6: Fraction of flux lost in a circular diaphragm due to 
centering-drift errors at the focal plane as a function of diaphragm 
size in standard deviations of CoC aberration from a Gaussian 
PSF. The drift is expressed as a percentage of the diameter of the 
detector diaphragm.

Figure 6 shows the flux deficit that results from centering errors of 
a circular diaphragm as a function of diaphragm size and drift of the 
program object from the center of the diaphragm.

The figure shows that the fraction of flux lost initially increases 
with diaphragm size due to drift in an absolute sense also increas-
ing (i.e. as a percentage of diaphragm diameter). The fraction 
of flux lost turns over rapidly as the diaphragm increases in size 
beyond two standard deviations of the CoC blur spot. For a mirror 
with a focal ratio of 2.0, and 15 waves rms local slope aberration at 
500 nm, equation (15) gives the one standard deviation CoC as 0.12 
mm. So, a diaphragm of 4 standard deviations is 0.5 mm and still 
yields less than 0.1% (i.e. one milli-magnitude) flux loss when the 
drift is about ten percent during the detector integration. However, 
if the drift in this example is allowed to extend to 20%, about 1.0% 
of flux is lost.

Conclusions
• Light bucket mirrors challenge traditional aberration analysis 

used for diffraction-limited general-purpose telescope mirrors. A sta-
tistical approach is needed to characterize performance properly. 

• For a detector diaphragm of 1.0 mm and a telescope focal ratio of 
2.0, a maximum of about 1.0 mm rms of smooth surface height aberra-
tion and 42 waves rms of local slope aberration is permissible for about 
99% of a point source’s flux to be collected.
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• Large mirror aberrations significantly reduce the SNR of col-
lected flux. The peak in SNR occurs at a detector diaphragm diameter 
considerably less than the size for collecting 99% of the source flux. 
Light bucket mirrors are not suitable for imaging applications nor are 
they desirable for use with low contrast objects.

• CoC blur spots from surface height flaws and local slope figur-
ing issues may be quantified by combining interferometer results from 
multiple areas.

• Telescope tracking requirements are relaxed due to the large de-
tector diaphragms used with light bucket mirrors.
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